HJM模型的主要方法是,在n个因子风险模型下,可以通过一个无风险资产和n个风险资产的组合构造资产市场上的所有资产。
给定债券波动率的期限结构,就可以得到债券定价的全部信息,它是无套利模型的基准模型。但模型本身在应用的过程中也会产生问题。在构造利率变动的二叉数或者三叉数模型时,利率通常在上升和下降后就不会再重新聚合。也就是说,利率先上升后下降与先下降后上升之后所达到的不是同一个节点,利率变动不是马尔可夫链,这就会导致二叉树模型的最终节点的几何扩大,极大地增加计算和模拟的难度。
HJM模型的主要方法是,在n个因子风险模型下,可以通过一个无风险资产和n个风险资产的组合构造资产市场上的所有资产。
给定债券波动率的期限结构,就可以得到债券定价的全部信息,它是无套利模型的基准模型。但模型本身在应用的过程中也会产生问题。在构造利率变动的二叉数或者三叉数模型时,利率通常在上升和下降后就不会再重新聚合。也就是说,利率先上升后下降与先下降后上升之后所达到的不是同一个节点,利率变动不是马尔可夫链,这就会导致二叉树模型的最终节点的几何扩大,极大地增加计算和模拟的难度。